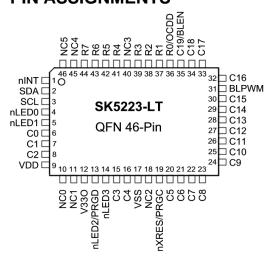


# **SK5223** FlexMatrix™ Keyboard Controller

Ultra-Low Power, User-Programmable SMBus I2C Keyboard Scanner with 8x20 Scan, PWM Backlight, Upgradable Bootloader


#### **FEATURES**

- SMBus v1.1 (or I2C) interface with get UDID
- PEC CRC enabled communication
- Failure-safe Bootloader for firmware upgrade
- 8 x 20 matrix keyboard scan
- 1 PWM backlight brightness control
- 4 Keyboard LEDs
- Advanced ghost key detection algorithm to maximize the key combination without additional diodes
- Built-in oscillator and digital circuit. No external crystal is needed
- QFN 46 pin package: 6.5x4.5mm 0.9 Max (LxWxH) or
- LQFP 48 pin package: 7x7mm 1.6 Max (LxWxH)
- Low power consumption: @ 3V: 0.1uA (no key pressed) 110uA (1 key) 50uA (inc per Key)
- Operation voltage range: 2.2 to 5.5V
- Industrial temperature range: -40°C to +85°C
- Custom versions available in small and large quantities

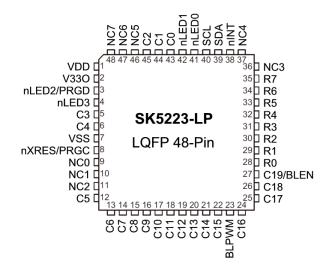
### **APPLICATION**

- Notebook/Netbook PCs
- Tablet PCs
- Tablet/Mobile Phone docking station
- Instruments
- I/O Expander
- Wireless keyboards

#### **PIN ASSIGNMENTS**

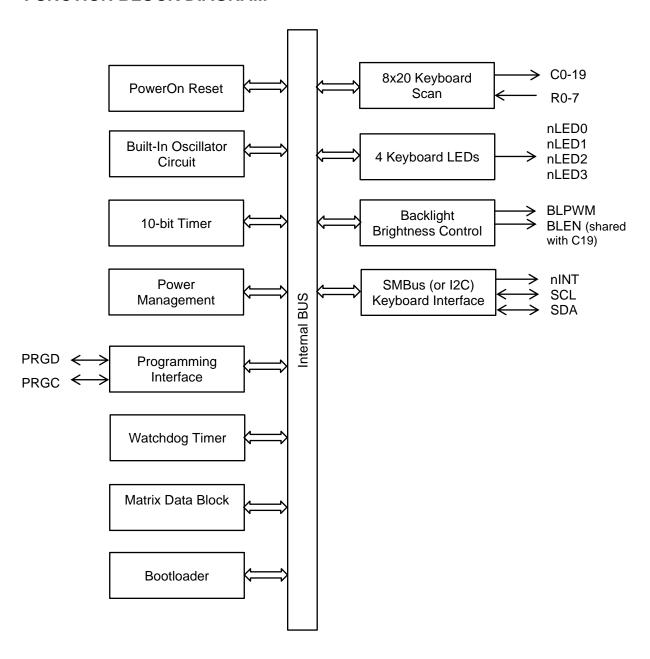


### **DESCRIPTION**


The SK5223 is an ultra-low power (0.1uA@3V) SMBus v1.1 (or I2C) interface keyboard encoder ASIC with 1 PWM backlight and 4 LEDs control. The failure-safe bootloader design allows the SK5223 to still have full keyboard functions even when any interruption failure happens during the firmware update. It's the best choice for customized keyboard design for battery powered notebook / netbook / tablet / docking station / Instrument / IO expander. The SK5223 deploys Sprintek FlexMatrix™ technology for users to upgrade firmware in the field.

The SK5223 scans and encodes an 8-row by 20-column matrix. The key press events are translated to keyboard event report.

The SK5223 provides command-controlled PWM for backlight LED PWM brightness control. An IO pin BLEN can be used to turn off the backlight circuit totally. When BLEN is used, the keyboard scan will be 8-row by 19-columns.


#### ORDEING INFORMATION

**SK5223-LT** QFN 46-pin, 0.4mm pitch, (6.5x4.5mm 0.9 MAX), Pb-Free, RoHS Complaint **SK5223-LP** LQFP 48-pin, 0.5mm pitch, (7x7mm 1.6 MAX), Pb-Free, RoHS Complaint





## **FUNCTION BLOCK DIAGRAM**





# **PIN DEFINITION**

# **SK5223-LT Pin Definition**

| Pin No  | Type | Name         | Description                                                     |  |  |  |
|---------|------|--------------|-----------------------------------------------------------------|--|--|--|
| 1       | 0    | nINT         | I2C slave interrupt line                                        |  |  |  |
| 2       | 10   | SDA          | I2C slave data line                                             |  |  |  |
| 3       | Ю    | SCL          | I2C slave clock line                                            |  |  |  |
| 4       | 0    | nLED0        | LED0 drive line                                                 |  |  |  |
| 5       | 0    | nLED1        | LED1 drive line                                                 |  |  |  |
| 6 – 8   | Ю    | C0 - C2      | Column lines 0 to 2 for scan matrix                             |  |  |  |
| 9       | Р    | VDD          | Power supply                                                    |  |  |  |
| 10      | NA   | NC0          | NC pin                                                          |  |  |  |
| 11      | NA   | NC1          | NC pin                                                          |  |  |  |
| 12      | Р    | V33O         | Reserved                                                        |  |  |  |
| 13      | Ю    | nLED2/PRGD   | LED2 drive line / programming data line                         |  |  |  |
| 14      | 0    | nLED3        | LED3 drive line                                                 |  |  |  |
| 15 – 16 | Ю    | C3 – C4      | Column lines 3, 4 for scan matrix                               |  |  |  |
| 17      | Р    | VSS          | Ground connection                                               |  |  |  |
| 18      | NA   | NC2          | NC pin                                                          |  |  |  |
| 19      | ı    | nXRES / PRGC | External reset: low active / programming clock line             |  |  |  |
| 20 – 30 | Ю    | C5 – C15     | Column lines 5 to 15 for scan matrix                            |  |  |  |
| 31      | 0    | BLPWM        | Backlight control PWM                                           |  |  |  |
| 32 – 34 | Ю    | C16 – C18    | Column lines 16 to 18 for scan matrix                           |  |  |  |
| 35      | 10   | C19 / BLEN   | Column line 19 for scan matrix / Backlight control LDO enable   |  |  |  |
| 36 – 39 | I    | R0 – R3      | Row lines 0 to 3 for scan matrix with internal pull-up resistor |  |  |  |
| 40      | NA   | NC3          | NC pin                                                          |  |  |  |
| 41 – 44 | I    | R4 – R7      | Row lines 4 to 7 for scan matrix with internal pull-up resistor |  |  |  |
| 45 – 46 | NA   | NC4 - NC5    | NC pins                                                         |  |  |  |

LEGEND I = Input, O = Output, IO = Input/Output, P = Power, NA = Not used

## **SK5223-LP Pin Definition**

| Pin No  | Туре | Name       | Description                                                     |  |  |  |
|---------|------|------------|-----------------------------------------------------------------|--|--|--|
| 1       | Р    | VDD        | Power supply                                                    |  |  |  |
| 2       | Р    | V33O       | USB 3.3 regulator output                                        |  |  |  |
| 3       | Ю    | nLED2/PRGD | LED2 drive line / programming data line                         |  |  |  |
| 4       | 0    | nLED3      | LED3 drive line                                                 |  |  |  |
| 5 – 6   | Ю    | C3 – C4    | Column lines 3 to 4 for scan matrix                             |  |  |  |
| 7       | Р    | VSS        | Ground connection                                               |  |  |  |
| 8       | 1    | nXRES/PRGC | External reset: low active / programming clock line             |  |  |  |
| 9-11    | NA   | NC0-NC2    | NC pins                                                         |  |  |  |
| 12 – 22 | 10   | C5 – C15   | Column lines 5 to 15 for scan matrix                            |  |  |  |
| 23      | 0    | BLPWM      | Backlight control PWM                                           |  |  |  |
| 24 – 26 | Ю    | C16 – C18  | Column lines 16 to 18 for scan matrix                           |  |  |  |
| 27      | Ю    | C19 / BLEN | Column line 19 for scan matrix / Backlight control LDO enable   |  |  |  |
| 28 – 35 | I    | R0 – R7    | Row lines 0 to 7 for scan matrix with internal pull-up resistor |  |  |  |
| 36 – 37 | NA   | NC3-NC4    | NC pins                                                         |  |  |  |
| 38      | 0    | nINT       | I2C slave interrupt line                                        |  |  |  |
| 39      | 10   | SDA        | I2C slave data line                                             |  |  |  |
| 40      | Ю    | SCL        | I2C slave clock line                                            |  |  |  |
| 41      | 0    | nLED0      | LED0 drive line                                                 |  |  |  |
| 42      | 0    | nLED1      | LED1 drive line                                                 |  |  |  |
| 43 – 45 | Ю    | C0 - C2    | Column lines 0 to 2 for scan matrix                             |  |  |  |
| 46 – 48 | NA   | NC5-NC7    | NC pins                                                         |  |  |  |

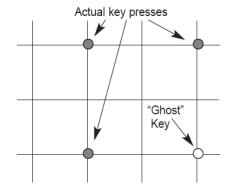
LEGEND I = Input, O = Output, IO = Input/Output, P = Power, NA = Not used



#### FUNCTION BLOCK DESCRIPTION

The SK5223 consists functionally of several major sections (see the block diagram on the previous page). These include power on reset, oscillator circuit, 10-bit timer, power management, programming interface, watchdog timer, keyboard scan, keyboard LEDs, backlight brightness control, matrix data block, bootloader, SMBus I2C keyboard interface. All sections communicate with each other and operate concurrently.

## **Keyboard Scan**


The SK5223 scans a keyboard organized as an 8 row by 20 column matrix for a maximum of 160 keys. Smaller size matrixes can be accommodated by leaving unused pins open. The IC provides internal pullups for the row input pins. When active, the encoder selects each row lines (R0-R7); for each row selected, it reads the column lines (C0-C19). A key closure is detected as a zero in the corresponding position of the matrix.

Each key found pressed is de-bounced for a period of 24ms. Once the key is verified, the corresponding key code(s) are loaded into the transmit buffer.

In any scanned contact switch matrix, whenever three keys defining a rectangle on the switch matrix are

pressed at the same time, a fourth key positioned on the fourth corner of the rectangle is sensed as being pressed. This is known as the "ghost" or "phantom" key problem.

Although the problem cannot be totally eliminated without using external hardware, there are methods to neutralize its negative effects for most practical applications. Keys that are intended to be used in combinations should be placed in the same row or column of the matrix, whenever possible. Shift keys (Shift, Alt, Ctrl, Window, Fn) should not reside in the same row (or column) as any other keys. The SK5223 has built-in mechanisms to detect and reject "ghost" keys.



C19 and BLEN are shared. BLEN (backlight LDO enable) is selected at default. Therefore, the key matrix scan is 8x19 at default.

# **Keyboard LEDs**

The SK5223 provides 4 pins to directly drive general LED indicators which can be controlled via commands.

### **SMBus I2C Interface**

The SK5223 follows SMBus v1.1 spec with fixed slave address and PEC. It implements proprietary SMBus protocols to report keyboard events and a command (0x03) to pull UDID. See details in document "Sprintek SMBus Keyboard Controller Communication Protocol".

nINT pin is low assertion to indicate that the SK5223 has events to report.

#### **Power Management**

The SK5223 automatically enters low power modes at operation conditions. Under 3V operation, when no key is pressed, the SK5223 enters low power mode and only consumes 0.1uA; when one key is pressed, the SK5223 consumes only 110uA; when two or more keys are pressed, the SK5223 consumes only 50uA per extra key. The ultra-low power consumption makes it well fit battery-powered devices.



# **Backlight Brightness Control**

The 10-bit PWM output controls the brightness of backlight circuit. The PWM clock is sourced from 6MHz clock, and the parameters such as frequency, pulse width, auto-off time are programmable.

An extra signal BLEN is automatically driven low to turn off the whole circuitry when PWM duty is 0% to minimize power consumption; while BLEN is automatically driven high when PWM duty is not 0%.

#### **Power On Reset Circuit**

The SK5223 has built-in power on reset circuit with simple external RC components.

#### **Oscillator Circuit**

The SK5223 has built-in oscillator circuit and no external crystal or resonator is needed.

#### 10-bit Timer

The 10-bit timer provides the timing control for I2C communication, keyboard scan and sleep timer wakeup.

## **Programming Interface**

The programming interface is reserved for Sprintek to programming new firmware. **PRGC and PRGD pins are recommended to be connected to a 6 pin header in the schematic.** The header needn't be populated in the final assembly. Three test points are preferred if 6 pin header is not allowed due to space reason.

# **Watchdog Timer**

The SK5223 utilizes a 500ms watchdog timer to ensure robust firmware design.

#### **Matrix Data Block**

The SK5223 provides an on-chip data block to store configuration data. The data block can be changed in the field. Custom matrix data block can be done via Sprintek custom software or customization service.

#### **BootLoader**

The SK5223 deploys a bootloader to update the newer version firmware via SMBus bus. The failure-safe design allows the SK5223 still have full keyboard functions even when any interruption failure happens during the firmware update.



### **SMBus COMMAND PROTOCOL**

#### **SMBus Slave Device Address**

The 7-bit address of the device is shown as below 0x39. After combined with R/W bit, the 8-bit address is 0x72 for I2C write operation, 0x73 for I2C read operation.

### **SMBus Based Low Level Communication**

The Controller follows SMBus protocol with PEC always enabled.

Table – Host to SMBus keyboard controller I2C Packet Formats

| SMBus Protocol |                                                                                                                                                  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Write Byte     | S   Address   W   {A}   Command   {A}   Data Byte   {A}   PEC   {A}   P                                                                          |
| Read Byte      | S   Address   W   {A}   Command   {A}   S   Address   R   {A}   {Data Byte}   A   {PEC}   nA   P                                                 |
| Write Word     | S   Address   W   {A}   Command   {A}   Data Low   {A}   Data High   {A}   PEC   {A}   P                                                         |
| Read Word      | S   Address   W   {A}   Command   {A}   S   Address   R   {A}   {Data Low}   A   {Data High}   A   {PEC}   nA   P                                |
| Block Read     | S   Address   W   {A}   Command   {A}   S   Address   R   {A}   {Byte Count}   A   {Byte 0}   A   {Byte 1}   A     {Byte N}   A   {PEC}   nA   P |
| Block Write    | S   Address   W   {A}   Command   {A}   Byte Count   {A}   Byte 0   {A}   Byte 1   {A}     Byte N   {A}   PEC   {A}   P                          |

**Legend:** S = Start, P = Stop, A = Ack, nA = NAck, W=Write (0), R=Read (1) Items in { } are sent from the slave (Keyboard controller) to the master (Host controller)

#### **Events**

#### **Event Format**

The device can notify the host when certain events happen. The device will assert nINT line first; then wait for the host send "Read Events" command to query what events happens. Each event is led by an event identification byte, then followed by zero or more data bytes.

#### **Event Table**

| Event Name             | Event<br>Code | Description                                                                     |
|------------------------|---------------|---------------------------------------------------------------------------------|
| EVENT_KEYSTROKE        | 0x00          | Keyboard event. Followed by one-byte keyboard status. See keyboard event table. |
| EVENT_KEYSTROKE1       | 0x17          | Keyboard event. Followed by one-byte keyboard status. See keyboard event table. |
| EVENT_RESET_COMPLETE   | 0x04          | Sent when POR                                                                   |
| EVENT_FWU_STATUS       | 0x06          | Event generated by SMBus bootloader. See further in FWU status table.           |
| EVENT_BACKLIT_OFF      | 0x07          | When backlit is turned off when backlit timeouts.                               |
| EVENT_PROD_INFO_STATUS | 0x08          | Not supported                                                                   |
| EVENT_CHECKSUM         | 0x15          | Followed by 3-byte data.                                                        |
|                        |               | Byte0: verification status                                                      |
|                        |               | Byte1: Checksum low byte                                                        |
|                        |               | Byte2: Checksum high byte                                                       |
|                        |               | Byte3: Area                                                                     |
| EVENT_BUFFER_EMPTY     | 0xFF          | When no event is in the even buffer, it's sent.                                 |



## **Keyboard Event Format (Event ID 0x00 and Event ID 0x17)**

Keyboard events are represented in single byte that indicates the row and column of the key that changed state.

| Event ID 0x00 | Keyboard Event Format                                             |  |  |  |
|---------------|-------------------------------------------------------------------|--|--|--|
| Bits          | Description                                                       |  |  |  |
| 7             | Key Press/Release                                                 |  |  |  |
| 1             | 1=Key was pressed, 0=Key was released                             |  |  |  |
| 4:6           | Keyboard Matrix Row                                               |  |  |  |
| 4.0           | Key scan input number (0-7)                                       |  |  |  |
| 2.0           | Keyboard Matrix Column                                            |  |  |  |
| 3:0           | Key scan output number (0-15 depending on number of columns used) |  |  |  |

| Event ID 0x17 | Keyboard Event Format                                              |  |  |  |  |
|---------------|--------------------------------------------------------------------|--|--|--|--|
| Bits          | Description                                                        |  |  |  |  |
| 7             | Key Press/Release                                                  |  |  |  |  |
| ′             | 1=Key was pressed, 0=Key was released                              |  |  |  |  |
| 4:6           | Keyboard Matrix Row                                                |  |  |  |  |
| 4.0           | Key scan input number (0-7)                                        |  |  |  |  |
| 2.0           | Keyboard Matrix Column                                             |  |  |  |  |
| 3:0           | Key scan output number (16-31 depending on number of columns used) |  |  |  |  |

# **List of Commands Of Application Code**

Command 0x03 - Get UDID

Command 0x82 - Read Events

Command 0xC0 - Reset Device

Command 0xC1 – Get Device Information

Command 0xC2 - Calculate Checksum

Command 0x90 - FWU Init

Command 0x83 - Set LEDs

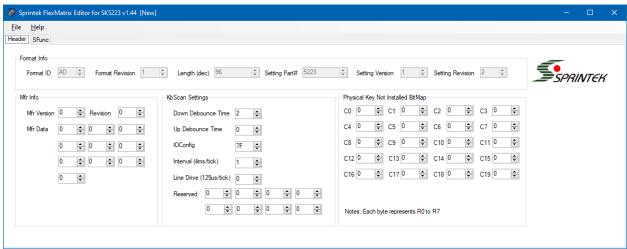
Command 0x8C – Reset Backlit Timer

Command 0x94 - Set Backlit Timeout

Command 0x95 – Toggle Backlit AutoOn

Command 0xC5 - Set Backlit Period and Duty




#### **KEYBOARD MATRIX DESIGN**

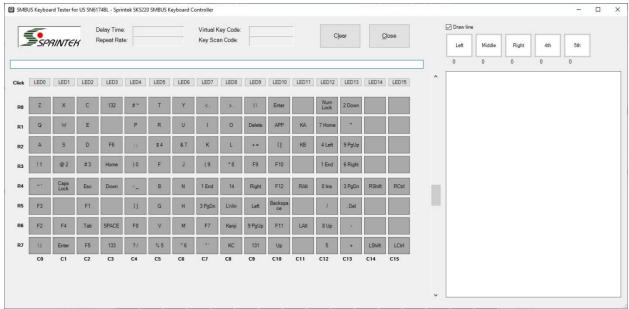
## **Design Keyboard Matrix**

The SK5223 reports keyboard location (row, column) to the host, so no matrix scan code mapping table is needed. The tables shall be defined at the host controller. The scan code table can be seen in the following section "HID Usage Tables 1.2" from <a href="www.usb.org">www.usb.org</a>. Please refer to Microsoft Windows Platform Design Notes "Keyboard Scan Code Specification" to get more information.

Keyboard scan and backlight control settings can be configured via FlexMatrix Editor software.

The Editor program can be downloaded from <a href="http://sprintek.com/support/Downloads.aspx">http://sprintek.com/support/Downloads.aspx</a>. Here is the screen snapshot of FlexMatrix Editor software.



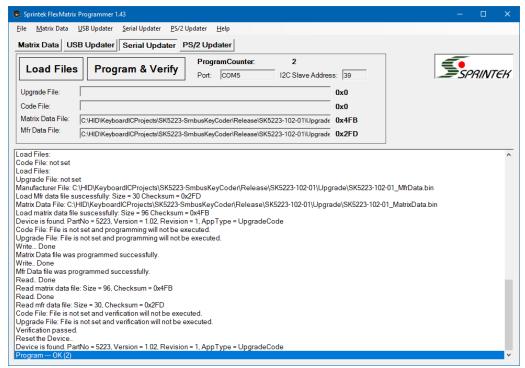

Screen snapshot of FlexMatrix™ Editor

# **Test Keyboard Matrix**

Sprintek offers a keyboard test tool to verify your keyboard design. The FlexMatrix Tester software can be downloaded from the download page on the Sprintek web site <a href="http://sprintek.com/support/Downloads.aspx">http://sprintek.com/support/Downloads.aspx</a>

Here is the screen snapshot of FlexMatrix Tester software.





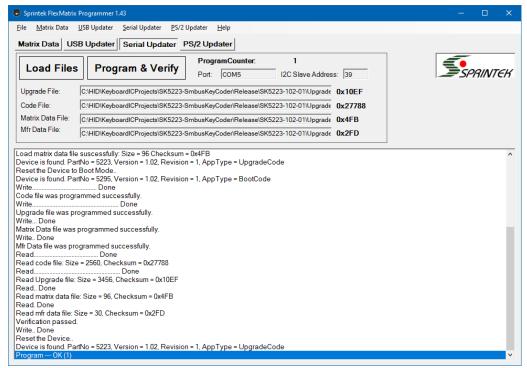

Screen snapshot of FlexMatrix™ SerialTerminal

## **Download Keyboard Matrix**

The FlexMatrix Programmer program enables the user to download matrix binary file to the SK5223, upload matrix data from the SK5223's flash data block to a binary file.

The Programmer program can be downloaded from <a href="http://sprintek.com/support/Downloads.aspx">http://sprintek.com/support/Downloads.aspx</a>. Here is the screen snapshot of FlexMatrix Programmer software.




Screen snapshot of FlexMatrix™ Programmer – Matrix Data Upgrade



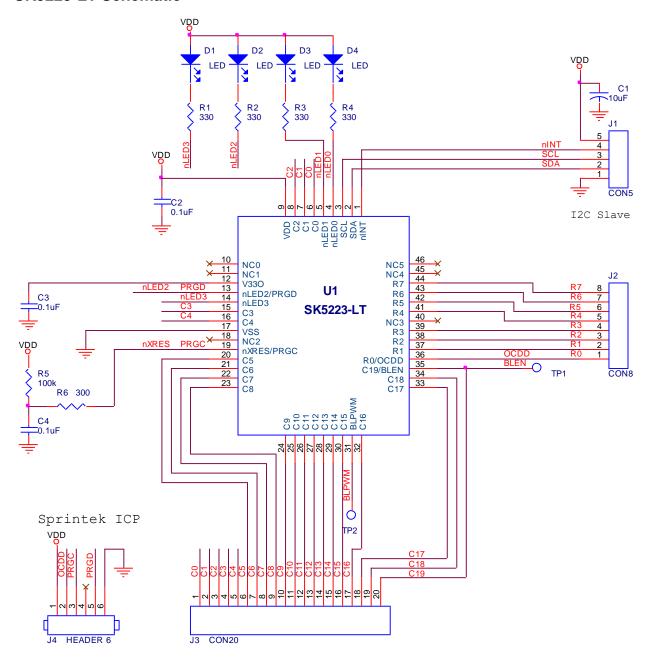
# **Code Upgrade**

The SK5223's bootloader to support field code upgrade. The feature enables users to enjoy new features of your design. 3 files can be upgraded via the FlexMatrix Programmer program: code file, matrix data, manufacturer data.

The Tester program can be downloaded from <a href="http://sprintek.com/support/Downloads.aspx">http://sprintek.com/support/Downloads.aspx</a>. Here is the screen snapshot of FlexMatrix Programmer software.

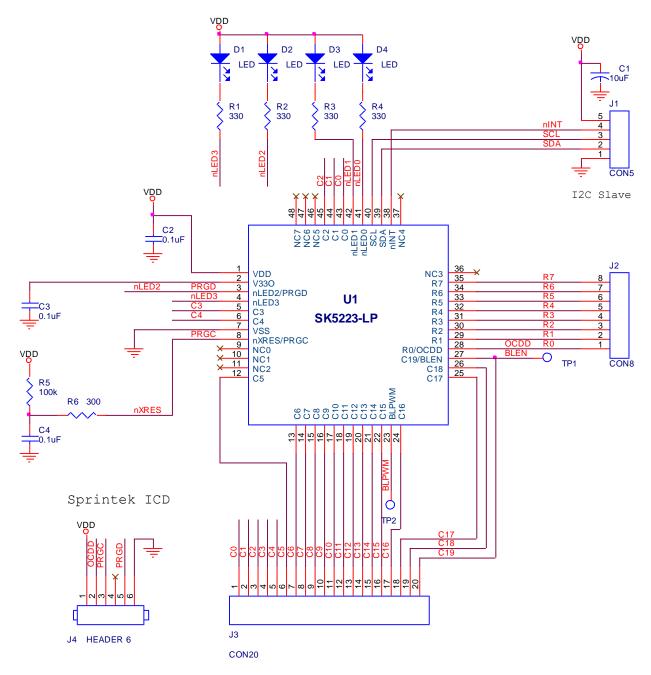


Screen snapshot of FlexMatrix™ Programmer – Code Upgrade


### **DEFAULT KEYBOARD MATRIX**

The SK5223 reports keyboard location (row, column) to the host, so no matrix scan code mapping table is needed. The tables shall be defined at the host controller. The scan code table can be seen in the following section "HID Usage Tables 1.2" from <a href="https://www.usb.org">www.usb.org</a>.




## SCHEMATIC OF REFERENCE DESIGN

### SK5223-LT Schematic





## SK5223-LP Schematic





# **ELECTRONICS SPECIFICATION**

# **Absolute Maximum Ratings**

| Symbol | Description                            | Min     | Тур | Max     | Units | Notes |
|--------|----------------------------------------|---------|-----|---------|-------|-------|
| TSTG   | Storage Temperature                    | -50     | 25  | +125    | оС    |       |
| VDD    | Supply Voltage on Relative to VSS      | -0.3    | -   | +6.0    | V     |       |
| VIO    | DC Input Voltage                       | VSS-0.3 | -   | VDD+0.3 | V     |       |
| IMTO   | Maximum Current into all pins in total | -100    | -   | +150    | mA    |       |

# **Operating Temperature**

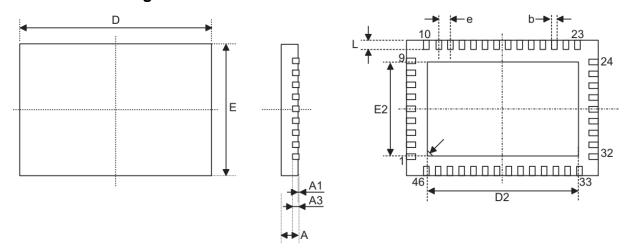
| Symbol | Description           | Min | Тур | Max | Units | Notes |
|--------|-----------------------|-----|-----|-----|-------|-------|
| TOP    | Operating Temperature | -40 | -   | +85 | Ô     |       |

### **DC Electrical Characteristics**

| Symbol | Description                                       | Min   | Тур | Max   | Units | Notes |
|--------|---------------------------------------------------|-------|-----|-------|-------|-------|
| VDD    | Supply Voltage at USB regulator enabled interface | 2.2   | -   | 5.5   | V     |       |
| IDD    | Supply Current when no key is pressed             |       | 0.3 | 2     | uA    | 5V    |
|        |                                                   |       | 0.1 | 1     | uA    | 3V    |
| IDDK   | Supply Current when one key is pressed            |       | 260 |       | uA    | 5V    |
|        |                                                   |       | 110 |       | uA    | 3V    |
| IDDE   | Incremental Supply Current when one               |       | 115 |       | uA    | 5V    |
|        | more key is pressed                               |       | 50  |       | uA    | 3V    |
| LVR    | Low voltage reset                                 | 1.995 | 2.1 | 2.205 | V     |       |
| RPU    | Pull-up Resistor                                  | 10    | 30  | 50    | kΩ    | 5V    |
|        |                                                   | 20    | 60  | 100   | kΩ    | 3V    |

## **GPIO Electrical Characteristics**

| Symbol | Description             | Min    | Тур | Max    | Units | Notes             |
|--------|-------------------------|--------|-----|--------|-------|-------------------|
| VIL    | Input Low Level         | -      | -   | 0.2VDD | V     |                   |
| VIH    | Input High Level        | 0.8VDD | -   | -      | V     |                   |
| BLFPWM | Backlight PWM frequency | 91.5   | 366 | 46,875 | Hz    | 366Hz is default. |

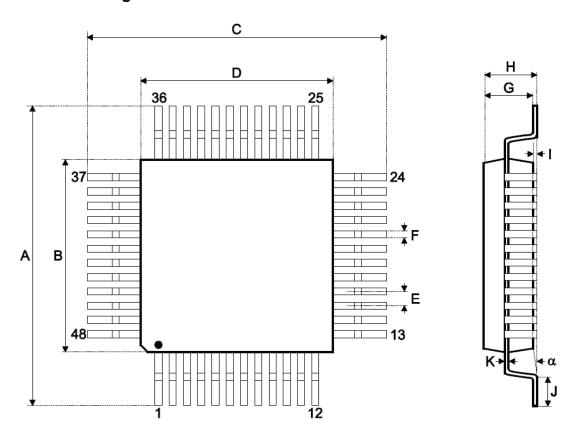

## **I2C Slave Electrical Characteristics**

| Symbol | Description   | Min | Тур | Max  | Units | Notes |
|--------|---------------|-----|-----|------|-------|-------|
| BI2C   | I2C baud rate | -   | -   | 400k | Hz    |       |



# **PACKAGING INFORMATION**

# SK5223-LT Drawing




| Symbol | Dimensions in mm |          |      |  |  |  |  |
|--------|------------------|----------|------|--|--|--|--|
|        | Min.             | Nom.     | Max. |  |  |  |  |
| Α      | 0.8              | 0.85     | 0.9  |  |  |  |  |
| A1     | 0                | 0.02     | 0.04 |  |  |  |  |
| A3     | -                | 0.2 ref  | -    |  |  |  |  |
| b      | 0.15             | 0.2      | 0.25 |  |  |  |  |
| D      | 6.45             | 6.5      | 6.55 |  |  |  |  |
| E      | 4.45             | 4.5      | 4.55 |  |  |  |  |
| е      | -                | 0.4 BSC. | -    |  |  |  |  |
| D2     | 5                | 5.1      | 5.2  |  |  |  |  |
| E2     | 3                | 3.1      | 3.2  |  |  |  |  |
| L      | 0.3              | 0.4      | 0.5  |  |  |  |  |

SK5223-LT 46-pin (6.5x4.5mm 0.9 MAX) SAW Type QFN



# SK5223-LP Drawing



| Symbol |      | Dimensions in mm |      |
|--------|------|------------------|------|
|        | Min. | Nom.             | Max. |
| Α      | -    | 9.00BSC          | -    |
| В      | -    | 7.00BSC          | -    |
| С      | -    | 9.00BSC          | -    |
| D      | -    | 7.00BSC          | -    |
| E      | -    | 0.50BSC          | -    |
| F      | 0.17 | 0.22             | 0.27 |
| G      | 1.35 | 1.40             | 1.45 |
| Н      | -    | -                | 1.60 |
| I      | 0.05 | -                | 0.15 |
| J      | 0.45 | 0.60             | 0.75 |
| K      | 0.09 | -                | 0.20 |
| α      | 0 °  | -                | 7 °  |

SK5223-LP 48-pin (7x7mm 1.6 MAX) LQFP



## SALE AND SERVICE INFORMATION

To obtain information about Sprintek Corporation or FlexMatrix keyboard controller family sales and technical support, reference the following information.

### **Sprintek Corporation**

4969 Corral St. Simi Valley, CA 93063, USA

Web Site: http://www.sprintek.com

## **REVISION HISTORY**

| Revision | Issue Date      | Description     |
|----------|-----------------|-----------------|
| 1.00     | August 12, 2020 | Initial release |